БАК снова проверил Стандартную модель — увы, успешно

Открытие бозона Хиггса было триумфальным для Стандартной модели, которая предсказала, как частица образуется, ведет себя и распадается во время столкновений в Большом адронном коллайдере. На самом деле, Стандартная модель точно предсказала почти все, что нам нужно было.

Казалось бы, стоит радоваться. Но такое положение дел не особо устраивает физиков, поскольку Стандартная модель является неполной. В ней нет никаких частиц, которые могли бы объяснить темную материю. Она не включает объяснений, почему во Вселенной больше материи, чем антиматерии. И она не предоставляет никакого механизма, который мог бы снабдить нейтрино массой.

Обнаружение новой частицы, которая не была предсказана Стандартной моделью, стало бы очевидным признаком того, что мы готовы выдвигаться за ее пределы. Но нам необязательно искать новую частицу, чтобы разбить Стандартную модель; как мы уже сказали, модель также предсказывает поведение и распад частиц. Так что поиск странных распадов также мог бы пролить свет.

В конце этой недели ученые с двух крупных детекторов БАК сообщили, что наконец выявили один из таких распадов. К сожалению, он произошел при условиях, неотличимых от тех, что предсказываются Стандартной моделью.

Этот распад включает в себя набор частиц под названием нейтральные B-мезоны. B-мезоны — это частицы, которые содержат тяжелый боттом-антикварк (или прелестный), который весит почти в четыре раза больше протона. В нейтральных B-мезонах боттом-антикварк находится в паре с другим кварком, странным. По сути, они представляют экзотические версии нейтрона, построенного с тяжелыми кварками.

Эти частицы могут распадаться совершенно разными способами, наиболее распространенный из которых заключается в производстве единичного мюона (тяжелого двоюродного брата электрона) и нейтрино. (Кварк и антикварк в этих частицах не могут аннигилировать, поскольку боттом-антикварк может проделать это только с боттом-кварком). Однако есть редкий путь распада, который включает тяжелейшую из известных частиц (топ-кварк, истинный кварк), что приводит к производству мюона и антимюона. Стандартная модель предсказывает, что эти пути довольно редкие. В случае с анти-боттом/странным B-мезоном, мы ожидаем, что это произойдет четыре раза на каждый миллиард распадов. В случае с анти-боттом/странным B-мезоном, мы ожидаем, что это случится лишь один раз на 10 миллиардов распадов.

Найти что-то вроде этого не так-то просто. Вам нужно просмотреть множество B-мезонов и избавиться от большого числа случайных событий, которые производят комбинацию мюона/антимюона. К счастью, БАК имеет детектор, LHCb, который специализируется на изучении B-мезонов. В одной из последних работ данные LHCb были объединены с данными детектора общего назначения CMS. Вместе два детектора просмотрели достаточно столкновений, чтобы обнаружить 100 или больше нужных нам распадов.

Ожидалось, что нейтральные B-мезоны живут достаточно долго, чтобы сдвинуться на несколько сантиметров от места столкновения протонов; два мюона из конкретно такого распада должны были пройти к внешним границам детекторов частиц. Ученые обоих детекторов также смоделировали довольно много распадов B-мезонов и ложных сигналов и обучили программное обеспечение различать их.

Более распространенные распады из антиботтом/странной комбинации были обнаружены с уровнем значимости более шести стандартных отклонений (6σ) и на уровне, которые полностью укладывается в предсказания Стандартной модели. Обнаружение антиботтом/прелестных распадов набрало только 3,2σ — недостаточно, чтобы провозгласить открытие. Уровень обнаружения был чуть выше предсказанного Стандартной моделью, но из-за недостаточного количества этих распадов по-прежнему укладывается в предсказания модели.

Подводя итоги: нет никаких признаков существования физики за пределами Стандартной модели, хотя мы знаем, что она должна быть. И это расстраивает. Неизвестные тяжелые частицы, вроде тех, что могли бы объяснить темную материю, могли бы вести себя подобно топ-кварку и увеличить число распадов на этом пути. Меньшие числа позволили бы ограничить идеи о том, какую дополнительную физику можно было бы ожидать. Вместо этого ученым придется вести исследования на основе уже имеющихся теоретических наработок.


commnetКомментарии

Пожалуйста, войдите / зарегистрируйтесь
или авторизируйтесь через любую соц. сеть, чтобы оставить комментарий.


Похожие новости
Как отслеживаются частицы на Большом адронном коллайдере? 20 авг. 2014 г.

Как отслеживаются частицы на Большом адронном коллайдере?

Любой, у кого есть ящик для принадлежностей всякого рода, знает, что отслеживать небольшие части, не связанные между собой, весьма трудно. Вот скрепки. Они же должны лежать здесь, вместе с клеем? Или они в большой коробке с канцтоварами, в которых лежат...

дальше...

Физики из ЦЕРНа уточнили массу бозона Хиггса 18 марта 2015 г.

Физики из ЦЕРНа уточнили массу бозона Хиггса

Физики двух коллабораций ATLAS (A Toroidal LHC ApparatuS) и CMS (Compact Muon Solenoid) объединили свои данные по массе бозона Хиггса и таким образом получили ее уточненное значение. Об этом сообщается на сайте ЦЕРНа.Уточненное значение массы бозона Хиггса...

дальше...

Осуществлен перезапуск Большого адронного коллайдера 05 апр. 2015 г.

Осуществлен перезапуск Большого адронного коллайдера

После двухлетней модернизации в Европе возобновил работу Большой адронный коллайдер (БАК). Его запуск состоялся в воскресенье, 5 апреля.По словам главы Европейского центра ядерных исследований (CERN) Рольфа-Дитера Хойера, к концу мая 2015 года мощность...

дальше...

Как усилить сигнал Wi-Fi с помощью адронного коллайдера 01 апр. 2015 г.

Как усилить сигнал Wi-Fi с помощью адронного коллайдера

Электромагнитное излучение определяет то как мы воспринимаем и взаимодействуем с миром вокруг нас – начиная от эмиссии света, с помощью которой наши глаза могут видеть, и кончая микроволнами, которые переносят сигнал Wi-Fi к вашему ноутбуку или смартфону...

дальше...

Пять загадок, которые должен разгадать Большой адронный коллайдер 15 марта 2015 г.

Пять загадок, которые должен разгадать Большой адронный коллайдер

Если что, бозон Хиггса остался в 2012 году. Самый мощный ускоритель частиц в мире начнет работать очень скоро, и ему предстоит заняться поиском ответов на другие вопросы — от «вимпов» до «страпелек». Дополнительная мощность, которой обзавелся Большой...

дальше...

История о том, как трое ученых почти нашли бозон Хиггса 25 янв. 2015 г.

История о том, как трое ученых почти нашли бозон Хиггса

Однажды осенним утром в 2009 году команда из трех физиков сгрудилась вокруг экрана компьютера в небольшом офисе с видом на Бродвей в Нью-Йорке. Они надели самую красивую одежду — даже аспиранты были с запонками — и приготовили бутылку шампанского...

дальше...

ЦЕРН: ученые близки к новому открытию на Большом адронном коллайдере 15 июня 2015 г.

ЦЕРН: ученые близки к новому открытию на Большом адронном коллайдере

Физики очень осторожны в объявлении каких-либо открытий, потому что необходимо исключить любого рода статистические флуктуации (случайные вероятности), и для подтверждения открытия необходимо набрать достаточное количество проверенной информации, сообщил...

дальше...

На Большом адронном коллайдере протестировали два основных детектора 11 марта 2015 г.

На Большом адронном коллайдере протестировали два основных детектора

На Большом адронном коллайдере (БАКе) провели пуск пучков для тестирования детекторов двух основных экспериментов — LHCb (Large Hadron Collider beauty experiment) и ALICE (A Large Ion Collider Experiment). Об этом сообщается на сайте Европейской организации...

дальше...

Последние новости

Новости на сегодня 16 окт. 2019 г.